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ABSTRACT

In this paper, a frequency domain method is developed for plant set estimation. The
estimation of a plant %et” rather than a point estimate is required to support many
methods of modern robust control design. The approach here is based on using a Schroeder-
phased multisinusoid input design which has the special property of placing input energy
only at the discrete frequency points used in the computation. A detailed analysis  of the
statistical properties of the frequency domain estimator is given leading to exact expressions
for the probability distribution of the estimation error, and many important properties.
It is shown that for any nominal parametric plant estimate, one can use these results to
construct an overbound on the additive uncertainty to any prescribed statistical confidence.
The “soft” bound thus obtained can be used to replace “hard” bounds presently used in
many robust control analysis and synthesis methods.

1. INTRODUCTION

The goal of robust control design is to synthesize a controller which establishes certain
closed-loop properties (e.g., stability, performance, sensitivity reduction, etc. ) for a spec-
ified set of open-loop plants. The set of open-loop plants is typically characterized using
a-priori information concerning the physics of the ‘system, system modelling, engineering
judgement, experience with similar systems, etc..

In the interest of reducing conservatism in the plant uncertainty description, there has been
recent efforts aimed at characterizing the plant set using system identification techniques
[6][~4][15][17] [18] [22] [25] [26]. In the cme that experimental input/output data is available
from the system, this requires characterizing the set of plants which are consistent with
(or equivalently, can’t be discounted based on), the data. In order to best support ro-
bust control objectives, it is of interest to find a precise statistical characterization of the
frequency domain uncertainty. For this purpose, the present paper develops a frequency
domain estimation method based on a Schroeder-phased sinusoidal input design, The use-
fulness of the Schroeder-phased input design for plant set estimation follows from certain
key properties of the error distributions established in this paper,

The error distributions are plant independent

The complete error probabilit~ distributions are available rather than just the means and
covariances

The error probability distributions are ezact and are not asymptotic approximations
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The DFT estimator is unbiased for any data length and hence does not require special
frequency windowing functions

The errors at each frequency grid point are statistically independent

It is shown that these properties lead to a precise characterization of the plant set toa
specified statistical confidence, e.g., (1 – a)” 100Yo. The significance of this result is that if a
robust controller is designed to provide some specified level of stability or performance for
all p2ants lying in the additive uncertainty set, then with probability 1 – a the controller
will work as planned when applied to the true system.

Aside from robust control applications, one of the most important practical properties
listed above, is that the DFT estimator gives an unbiased estimate, i.e., the frequency
domain estimate is free from windowing distortions. This may seem somewhat remarkable
to researchers familiar with the usual “leakage effects” associated with using white noise,
burst-random, or pseudo-binary random inputs. Details of the implementation required
for distortionless frequency domain estimation are contained in the paper.

There is much to be gained from using statistical uncertainty characterizations since they
arc potentially less conservative than deterministic uncertain y characterizations. For ex-
ample, the notion that noise disturbances tend to “average out” over time is completely
missing from deterministic treatments (cf., Helmicki, Jacobson and Nett [15]). On the
other hand, there is very little to lose from using a statistical approach i.e., a controller
based on hard bounds can be designed to work with probability 1, while a controller based
on statistical bounds can be designed to work with, for example, probability .9999.

2. STATISTICAL ADDITIVE UNCERTAINTY BOUNDS

2.1 Background

For this discussion, it will be useful to make the following assumptions,

Assumption 1 The true plant is a single-input,
stable linear time-invariant (LTI) transfer function
resentation P* (Z-l) in the shift operator z-l.

single-output unknown exponentially
assumed to have a sampled-data rep-

m

Assumption 2 The output disturbance v(k) can be represented by v(k)= VVd(k) where
d(k) is a white Gaussian zero-mean noise sequence normalized such that E[d(j )d(k)] = ~j~;

W is a linear filter which be decomposed as TV(Z-l ) = o~(z-l ) where u <00’ is a scalar
(possibly unknown); and ~(z-l ) is a known stable and stably invertible transfer function.
●

An additive error AA(Z-’  ) is used to characterize the mismatch between the true plant
P*(z -’ ) and a nominal plant estimate P“(z-] ), i.e.,

A~(z-’) = P*(z-l) – PO(z-l) (2.1)

It will be useful to define the set of plants flA(PO, ~A(U)) associated with a specified
overbound ‘f?A(@) on the additive error, i.e.,

G?A(PO,lA(W)) = {P: 1P – P“l < 4A(u), for all w c [O, m/T]} (2,2)
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This notion is extended to the specification of a statistical overbound 4~-a(w) in the fol-
lowing definition,

Definition 2.14~-a(w) is said to bean overbound on the addiiive uncertainty with sta-
tistical confidence (1 – a) x 100% if,

m

The significance this definition is that ~~-a characterizes (to statistical confidence (1 – a) x
100%) a set in which the true plant belongs. Hence, if a robust controller is designed to
provide some specified level of performance for all plants lying in the additive uncertainty
set ~A(PO, /j-a(w)), then with probability 1 — a the controller will work as planned when
applied to the true system.

A main result of this paper will be a systematic method for determining l~-o directly from
experimental data. In anticipation of this result, let x denote a set of experimental data
taken on the system. The specific form of this data will be discussed in more detail later.
Assume that a nominal stable parametric plant estimate P“ is fit to the data. Given x
and P“, we define the following mapping.

Definition 2.2 B ]-o-rule:
l?l-a : x,PO + q-”(w) (2.4)

where l~-a (w) is a nonparametric overbound on the additive uncert~nty with statistic~
confidence (1 – a)100Yo. m

Intuitively, for any nominal plant estimate P“, the f31 - a-rule is a rule for determining the
statistical additive uncertain y overbound l~-a(w)  directly from experimental data X. The
interpretation is that of characterizing (to a specified statistical confidence) the “ball” of
plants about the nominal estimate PO(z-l  ) which cannot be discounted based on the data.

2.2 Constructing B] ‘“-Rules

A general method to construct l?) ‘“-rules for sampled-data systems from noisy frequency
domain data will be discussed in this section. The bounds derived here can then be
transformed into the continuous domain (or more precisely the w-plane) using a Tustin
transformation for use with modern robust control design software [2][9].

Definition 2.3 A discrete-time MIMO transfer function G(z-] ) is said to be in D(ikf, p) if
the impulse response sequence {g(kT)}&o defined by g = Z-l(G(z-l )) satisfies lg(kT)l <
iWp~for someoo>Al>Oandl>pa O. ●

Lemma 2.1

Let G(z-l ) ~ D(lkf, p). Then the modulus of the derivative of G on the unit circle can be
uniformly bounded from above as follows,

qe-@T) ~ TJJP ,
O!Ld I -  ( l - p ) ’
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Proofi Theresult follows from differentiating G(e-~w~) =~~=Og(kT)e-JW~  ~and using
the fact from Definition 2,3 that lg(kT)l ~ Mpk. Details can be found, for example, in [6].
B

A general result for constructing  BI -~. rules from frequency domain data is given next,

Theorem 2.1

Given discrete-time plant P*(z-l ) E D(M, p), assume that noisy frequency domain data
{P(~i)}~l are available on a uniform grid on the UIIit circle U, = ~AQt ~ = 1> O..~N ‘ith
grid spacing Aa = U,+l – ~i = ~. Assume that the accuracy of each data point can be— -.
characterized by the quantity ~i such that the event Ei,

E .1. lP*(e-j~,7’ ) –  F’(LLJ,)I ~ 6,

is satisfied with at least probability 1- K at each grid point i.
1 ,..., N may or may not b: jointly statistically independent. Let
interpolant  to the data {P(~,)}~=l ~ i.e. >

(2.6)

Here, the events E, i =
S(P, w) be a linear spline

{

.P(Ldi)  + =(~(~i+l) – fi(Ldi)) for @ 6 (@i, @i+l]
S(P, LO) = (2.7)

P(U1 ) for w G [O, wl].

and let PO(Z-l ) be any stable parametric model fit to the data. If g~-a(~)  is defined m>

Zj-a(ti) = Bl(u) + ~2(~) (2.8)

132(L0)  = lS(P,u) – P“(e-iwT)l (2.10)

then, l~-u is an overbound on the additive uncertainty with statistical confidence,

{-

(l-K)N if  Ei, i=ll–a= ~ ~N ,..., N are independent
otherwise

Proofi Consider the following inequality,

lp*(e-jwT) _ pO(e-@T)[ < lP*(e-i’”T) - S(P,W)I + B2(W)—
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where B2 (w) = IS(2,  w) – PO(e-@~)l.  The term BQ can be computed directly for all w.
The 1st term on the right hand side of (2.12) can be bounded as follows for w 6 [~i, ~i+l],

l.P*(e-JwT)-S(P,  U)l = p*(e-jwi+lT)-s(.P,  Loi+l)- (s(~,@)-s(~,~i+l  -  ‘i+’ ~~)) /
w

(2.13)

Here, the last inequality follows from (2.7) and the bound given by Lemma 2.1. on the
transfer function derivative dP* /dw. From the above analysis it follows that 4~-m(w) is an
overbound on 1P* (e-j’”T ) – PO(e-jwT)[ for all w ~ [0, m/T] if events (2.6) are satisfied at
all grid points simultaneously.

If events Ei, i = 1,..., N are statistically independent, and each has probability 1 – K of
being true, the probability of all events being satisfied simultaneously is given by 1 – a =
(1 --K)N.  Alte&atively, ‘if the events Eij i =
let ~i denote the complementary event of Ei.
inequality (cf., Feller [10], pp. 110) as follows,

I- N. .N.

““’1 QEi J = l-prObl UE 1
In this case, the probability of all events (2.6)
(2.14) to be at least 1- a = 1- KN.

1 ,..., N are not statistically independent,
Then one can derive a useful Bonferroni

~ 1 – ~ Prob[~i] =1–uN (2,14)
i = l

being satisfied simultaneously is seen from
9

As desired, t~-a(ti) in Theorem 2.1 defines a B1-a -rule since it is a function only of
the nominal plant P“ and the experimental plant data set x = {M, p, {~(wi), ~i } ~1 }.
Intuitively, the overbound .t~-a(w) in (2.8) can be thought of as the sum of three terms: a
curve fit error B2(w); an estimation error at the grid points ~i; and an interpolation error
between grid points Bl(w) – ~i.

Values for M and p will be assumed known a-priori (they maybe known from the physics
of the process, or Cana be found by impulse or step response experiments). Systematic
methods for finding {P(~i)j ci },L1 with the desired properties in Theorem z-l will be the
main focus of the remainder of this paper.

3. SCHROEDER-PHASED INPUT DESIGN

A signal processing diagram is given in Fig. 1 for the nonparametric frequency domain
identification scheme to be discussed in this section.

Consider the periodic input design composed of a harmonically related sum of sinusoids,

u,(k) = ~ &cOs(wikZ’ + ~i) (3.1)
i=l
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where w~ = 27ri/TP, Tp/T = N,, n, s N./2. The total power is normalized as,

n8

E (Y:=l (3.2)
i = l

where the power in each component {~i >0, i = 1, . ..n. } is assumed specified. In order to
minimize peaking in time domain the sinusoids are phased according to Schroeder [24] as,

+i =  2~~j~~ (3.3)
j=]

(Here, a slightly modified form of the Schroeder phase is used in (3.3), as derived in Young
and Patton [27]). For example, assuming equal powers ~i = l/ns, gives, #i = ~,-(i’ + i).
Linear terms which appear in i can always be dropped since they correspond to pure time
shifts. The practical use of Schroeder-phased harmonic signals for system identification has
been described by Flower, Knott and Forge [11], and its superiority to sine-sweep profiles
for identification of helicopter dynamics has been demonstrated in Young and Patton [27].

For technical reasons, the following assumption will be made,

Assumption 3 The system is driven by Schroeder-phased sinusoidal input (3.1), and
allowed to reach steady-state before experimental data is taken. m

At steady-state, the plant response to U8 is denoted as y. and is given by,

~a(k) = fJ~ificos(@i~~  + di) – ai6sin(@ikT  + #i)) + v(~) (3.4)
i=]

where,
ai = %{ P*(e-JwiT )}, bi =  $?{P*(e-jwiT)} (3.5)

For notational convenience, the index k starts from O in (3.4) even though we are in steady-
state. Since the goal is to estimate the quantities ai and hi it is convenient to collect these
quantities in a single vector 9 defined as follows,

In
Y8

e = [(7’, iF]* (3.6a)

a = [al,...,  a~,]T; b= [h,...,  ~nJ]T (3.6b)

order to “whiten” the effect of the noise in (3.4), the time domain input US and output
will be inverse filtered by ~ to give filtered signals fis and fi~ as follows,

~(z-l )j.(k) = ya(k); ~(z-1)ii8(k) = U8(k) (3.7)

Since the frequencies in us are harmonically related, both the input iis and deterministic
part of the output ~. at steady-state will be periodic with period T’. Assume that m
periods of filtered input/output data ti., ti~ are collected at steady-state. Denote the output
data from the f?th period as,

i%(k) = Wk + (~ – I)N.) (3.8)

6



for k = 0,...,  N. – 1 and ~ = ~,..., m.

Remark 3.1 It is noted that when inverse filtering by ~ is used, the steady-state as-
sumption in Assumption 3 requires that the filter transient settles out in addition to the
plant transient. 8

Ilequency domain estimates ~, iii, ii are now constructed by taking DFT’s on the filtered
time-domain data,
DFT Frequency Domain Estimator

(3.9)

Remark 3.2 It is emphasized that the DFT is evaluated precisely on the points of support
of the Schroeder-phased input (3.1). The use of an FFT to implement (3.11) requires
using the full number of sinusoids (n~ = Na/2) in the sum (3.1), choosing the frequency
separation in the input design 27r/(N8!Z’) such that the number of samples Ns in one period
of U8 is some power of 2. m

Remark 3.3 The DFT estimator is conveniently computed recursively in the number of
data windows m since one can keep track of the running sum, ~~=1 ~f(~i) Where each ~tf
is computed using an FFT of fixed size. ■

It has been assumed that W = a~, where ~ is assumed known, and o may be either
known or unknown. If u is unknown, it can be estimated as follows,

Noise  Variance Estimator

where,

(3.12)

(3.13)

4. STATISTICAL ANALYSIS

4.1 General Results

A detailed statistical analysis of frequency domain estimator (3.9) is given in Appendix A
for the case W = u” I and in Appendix B for the more general noise case W = o~. The
results will be summarized below for convenience.

7



To aid subsequent discussion, a vector ~ of estimated quantities ~i and bi in (3.10) is
,.

defined as follows,
io = [a,,...,  iin,, J,..., tn,]T (4.1)

Theorem 4.1

Assume that the Schroeder-phased sinusoidal input us defined in (3.1) is applied to ex-
ponentially stable plant P* (z-l) (Assumption 1), giving rise to the steady-state output
y. defined in (3.4)(3.5). Let the measurement noise coloring filter be given by W = am
(Assumption 2) and implement inverse filtering of us and y, by ~ (cf., (3.7)) giving rise
to filtered @put il. and filtered output ~.. Let frequency domain estimates ~ defined in
(3.9) and @ defined in (3.10)(4.1), be computed based on m >1 periods of the filtered
steadY-state data {~~ }~=1 in response to the Schroeder-phased input (3.1) (Assumption
3). Then,

4 .la  If a is known, the exact error probability y distributions are given as,

lP*(e-@JT) – P(Ldi)12
U2Cii

- X2(2); e – e - iv(o, q (4.2)

(4.3)

C = diag[cll, . . .. C~. ~.]; Cii = l~(e-j’’’iT)l(cuimiNs)s) (4.4)

where X2(v) denotes a Chi-Squared distribution with v degreees of freedom.

4.lb If o is unknown, and estimated using (3,12), the exact error probability distributions
are given as,

“2
(mN* – 2n.)> N

lP*(e-jW’T)  - .P(L0i)12
262Cii

hi — (Ii N t(mN8 – 2ne);
6*

x2(mNs - 2n.) (4.5)

w F(2, mN. – 2ns) (4.6)

&i – bi—  N t(mN.  –  2n~) (4.7)
&&

where F(vl, U2 ) denotes a Fisher distribution with VI and V2 degrees of freedom, and t(v)
denotes a Student t distribution with v degrees of freedom.

Proofi The key step is to first prove that the DFT estimator (3.9) is the Gauss-Markov
estimator for the stated problem. The results (4.2)-(4.7) can then be developed from
existing statistical theory. Although straightforward in principle, the details are tedious
and have been delegated to Theorems A.1, A.2, and B.1 in the Appendices. ●

The following corollary to Theorem 4.1 is useful when statistical confidence regions are
desired. It follows directly from Theorem 4.1 and is stated without proof.
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P.1

P.2

P,3

P.4

P.5

P.6

Corollary 4.1

Under the conditions of Theorem 4.1, the (1 – a). 100% confidence bounds associated with
the DFT estimates (3.9)(3.10) are summarized below,

,p*(e-jwiT)

{

cii~zx~-a(z) for a2 known-  P(Wi)12 ~ (4.8)
cii&22F1-@(2, mNa – 2na) for 02 estimated by ti2

ltii -
{

Cii021jf_aUi12 < for a2 known
cii62tl-a(mNa – 2T2,) for U2 estimated by 62

(4.9)

(4,10)

Cii = lW(e-ju’T)12/(~  irnN.) (4.11)

where ql-~, t?_~(v),  X~-o(U) and F’1-a(w,  VZ) denote the (1 – a) “ 100 percentiles for
the Gaussian distribution, the Student t distribution with v degrees of freedom, the Chi-
Squared distribution with v degrees of freedom, and the Fisher distribution with VI over
V2 degrees of freedom, respectively. ●

Remark 4.1 To avoid confusion, it is pointed out that percentiles for symmetric densities
(Gaussian and Student) used in this paper are assumed to be two-sided i.e., for z Gaussian,
the percentile ql –a is defined as,

●

Several important properties of the frequency domain estimates (proved in Appendices A
and B) are summarized below,

~(~i), ~i, and &i, are unbiased and consistent estimators of P*(e-~Ui T), 9{ P*(e-jWiT)},
and ?R{P*(e-jwi T)}, respectively for i = 1, . . . . ns.

~i is statistically independent of ~j for i # ~

&i is statistically independent of ~j for i # j

tii is statistically independent of ~j for all i and j

~(wi) is statistically independent of ~(~j) for i # j

b2 is an unbiased and consistent estimator of cr2

For the purpose of visualization, the estimate ~(~i) and its confidence region are depicted
in a Nyquist plot in Fig. 2. Here the ~onfiden~e  region for the case of 02 estimated by 82
is seen as a perfect circle centered at P(~i ) = bi + jtii of radius c; where from (4.8),

~2 = 62 l~(e-jwiT)122F1 _a(2, mN8- 2ns)
i ~imNa

9
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1.

2,

3.

1.

2.

3.

4,

Noting that F’l -.(2, v) is bounded as v becomes large (e.g., F’l _@(2, v) <9 for 1 – a = .999
and v > 30, [7]) the uncertainty region increases with noise-to-signal ratio 62~/~i and
decreases with the amount of measurement data mN,.

Remark 4.2 Under the conditions stated in Theorem 4.1, the error distributions (4.2)-
(4.7) and confidence regions (4.8)-(4.11) are exact. However, they become approximate if
the conditions are violated, i.e.,

The system has not reached steady-state before the data is taken

The noise v(k) is not Gaussian

Inverse filtering by ~ is omitted

The effect of 1. is to create a bias in the estimate, and the previous expressions must be
correspondingly modified. In contrast, it is noted in Remarks A. 1 and B. 1 of the Appendix
that the effect of 2. and 3. are mild and may be violated in practice while maintaining
reasonable results. m

4.2 Comparison With Other Input Designs

Several key properties of the Schroeder-phased input design have already been summarized
in the introductory remarks of Sect, 1. It is emphasized that these properties arise from
the special structure of the Schroeder-phase input and are not true for more general choices
of input design [8] [16] [19]. For example, the reader is referred to error estimates on page
156 of Ljung [19], where it can be seen that none of the properties listed in Sect. 1 are
generically true for bounded quasi-stationary input designs on finite data sets.

5, STATISTICAL PLANT SET ESTIMATION

5.1 Basic Algorithm

An algorithm for plant set estimation based on the Schroeder-phased sinusoidal input
design is given by the following sequence of steps,

Apply Schroeder-phased sinusoidal input design with full number of sinusoids (i.e., ns =
N./2) to plant. Use DFT frequency domain estimator (3.9) to find noisy frequency domain
data {~(~i)}~~l on the uniform grid on the unit circle ~i = ~Ag, ~ = 1,..., w with grid

spacing Ag = ~i+l – ~i = ~.

Set N = na in Theorem 2.1, specify M and p, and specify stable nominal parametric plant
estimate PO(Z-l ), (it is useful in practice to determine PO from a frequency weighted curve
fit to the data [3]).

Specify 1 – K and compute ~i, i = 1, . . . . n~ in Theorem 2.1 by the (1 — x). 100% confidence
bounds in Corollary 4.1 (i.e., choose c; = ciia2X~_~(2) for 02 known; or choose t: =
cii622F1-K(2j mNa – 2n8) for CT2 estimated by 62 in (3.12)). (1 – ~)” 1OO$ZO DC error CO.

1 ‘a from Theorem 2.1, equation (2.8), where the confi-Calculate statistical overbound 4A
dence factors are 1 – a = (1 – ~)n” for the case where 02 is known; or 1 – a == 1 – n.tc for
the case where 02 is estimated by 62.
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Due to step 3. above, the event (2.6) is satisfied with at least probability 1– K at each
grid point. In the case where a is known, these events are statistically independent from
one grid point to the next by property P.5 of Sect. 4. Hence all conditions of Theorem
2.1 are satisfied, and .?~-a(u) is an overbound on the additive uncertainty with statistical
confidence 1 — a = (1 - K)n’.

Alternatively, in the case where 6 is estimated, the events (2.6) are not jointly independent,
(i.e., c; = cii&22F1LK(2, mNa – 2ns) now depends on 62), and from Theorem 2.1, the
quantity l~-a(w) is an overbound on the additive uncertainty with statistical Confidence
l-cY=l-n. K.

5.2 Maximum Modulus Student t-Intervals

For n.tc <<1, the expression 1 –n,~ is close to (1 – R)ns since the two quantities are related
by a first order Taylor expansion. In general, however, the expression can be somewhat
conservative since it is based on the Bonferroni inequality in Theorem 2.1 which makes no
assumption as to the underlying probability distributions.

Less conservative bounds can be found in the case where U2 is estimated by 82 using
information about the joint probabilities. For example, from (4.2), one can construct the

Normal vector, x ~ ZY112(@ – 6) w N(O, 1) and from (4.5) one has z ~ v62/a2 ~ X2(v)
where v k mNa – 2na. It can E&o be shown using an argument identical to the proof
of Theorem A.2 that z and z are statistically independent. Hence, the random vector
defined by the ratio ~ ~ Z/@ E W’ (p = 2n. in the present case), is known to
have a pMultivariate Student t probability density (cf., Anderson [1], pp. 283), given by
r - $(~1, . . ..~p. v) where,

(5.1)

Precise simultaneous confidence regions can be determined directly from the joint proba-
bility distribution (5.1). For example, consider the Maximum Modulus Student t-Interval
u ‘u~ defined by the solution to the following equation,= p,v

u
7 =
!1

. . . u f(T~, . ...7-p; V)ch..ckp
- u - u

Values of Uj,v have been tabulated in Hahn and Hendrickson [12].
(5.2) that the set of simultaneous rectangular intervals given by,

(5.2)

Clearly, it follows from

(5.3)

will have an overall statistical confidence of ezactly 1 – ct. For each i, circumscribing the
rectangular region (5.3) by a circle of radius c~ = b= U;-j” ensures that all events Ei

- in (2.6) are satisfied simuh!aneously with an overall probability greater than 1 – a. Using
the maximum modulus t-intervals in this manner will generally provide less conservative
confidence regions than using the Bonferroni inequality of Theorem 2.1.
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Finally, a much simpler (although approximate) method is given which can be used for
most practical purposes. It can be shown that l?[~] = O, and E[~7~ = 1” v/(v – 2) for T
distributed as in (5.1) (Anderson [1]). This implies that the quantities in (4.7) are uncor-
related from one frequency to the next. As v increases, the distribution (5.1) approaches
joint Normal, for which uncorrelatedness implies statistical independence. Hence, in the
limit as v becomes large, one can use the approach outlined in Sect. 5.1 for the case
where iY2 is estimated by 62, but this time assuming that the events (2.6) are statistically
independent, i.e., letting 1 – cu = (1 – ~)””. Since v = mN8 – 2nS is typically large in the
present application, this approach should give quite reasonable results.

5.3 Robust Control Applications

The additive uncertainty overbound .t~-”(w) can be used for either robust control analysis
or synthesis, If used for synthesis, the additive uncertainty is typically represented as the
product of a norm bounded perturbation and a parametric weighting transfer function
WA, i.e.,

~~-”(w)  = A(w) WA(e-~’”T) (5.4)

Given l~-a, the weighting function WA in (5.4) can be found using graphical methods, or
a more systematic optimal minimax method recently proposed in [23].

Given P“ and WA, controllers can be designed using p-synthesis and Hm software [2][9] to
provide stability and a prescribed degree of performance for all piants in the uncertaint~
set (2.3). This overall procedure involves a ‘lhstin transformation of PO and WA into the
w-Domain, a robust control design using the software in [2] or [9], and then an inverse
Tustin transformation of the final compensator for implementation in the z-domain. Since
by definition the true plant lies in the uncertainty set (2.3) with probability 1 – a, this
approach assures that with 1 – cr!lo confidence the robust controller will work as designed
when applied to the true system. Since the size of the uncertainty set (2.3) will decrease
with a reduction in the confidence factor 1 — a, this approach provides a clear trade-off
between performance and risk.

As an alternative to using Theorem 2.1, one can use the Schroeder-phased multisinusoidal
input design to support the recent method of Helmi~ki, Jacobson and Nett [15]. Their
scheme requires frequency domain data of the form {P(~i ), ~i } where ~i denotes a bound
on the error in $(~i ). This is precisely the data available from the multisinusoidal input de-
sign. Replacing hard bounds (found their paper using one-at-a-time sinusoidal excitation)
with soft bounds derived here, allows all of their results to be interpreted in a rigorous
statistical framework. This also has the advantage that the Schroeder-phased sinusoids
are applied in parallel, and that the statistical bounds go to zero asymptotically at the
frequency grid points, while the hard bounds derived in [15] do not.
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[7]

6. CONCLUSIONS

A frequency domain identification methodology was introduced using a Schroeder-phased
multisinusoidal input design. Exact expressions were derived for the error distributions
under the assumption that data is gathered while the system is in steady-state. The error
distributions were shown to be plant independent, unbiased, consistent, and statistically
independent from one frequency to the next.

Using the special properties of the Schroeder based frequency domain estimates and certain
a-priori information as to the system damping, a method was developed to characterize
the plant set to a precise statistical confidence. In particular, the plant set is characterized
by a statistical bound l~-a on the additive uncertainty, which can be used to replace hard
bounds presently used exclusively in the robust control literature.

If a robust controller is designed to provide some specified level of stability or performance
for all plants lying in the additive uncertainty set defined by &-a, then, with probability
I – a the controller will work as designed when applied to the true system. This effects
a ‘(marriage” between identification and control disciplines such that noise is allowed to
‘(average out” over time, giving potentially less conservative uncertainty descriptions corn-
pared to purely deterministic treatments.
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APPENDIX A

The analysis in Appendix Ais self-contained, and inapplicable to systems for which the
output noise coloring filter in Fig. 1 is assumed to be aconstant aorequivalently,  ~= 1.

Consider the periodic input design composed ofa harmonically related sum ofsinusoids,

‘US(k) =~&COS(Ld~kZ’ +#i) ( A l )
i=]

where ~i =2ni/TP,  TP/T=N,, n* SNa/2. While thephaseterms+i should be chosen
in practice to minimize peaking in time (i.e., via Schroeder), the particular choice of phase
in (A. 1 ) will not effect the results in this section.

Assuming that the plant is exponentially stable, the system will reach steady-state, at
which time the plant response to us is denoted as ye and is given by,

va(~) = ix~) + v(~) (A.2)

where,

~(k) = ~ bi&cOs(~ikT + ~i) – ai&sin(~ikT + #i) (A.3)
i= 1

CLi = $l{P*(e-jwiT )},  bi = 3?{ P*(e-jwiT)} (A,4)

Since the goal is to estimate the quantities ai and bi it is convenient to collect these
quantities in a single vector 8 defined as follows,

O = [aT, bT]T (A.5a)

a = [a~,...,a~, ]T, b = [bl,..., bta,]T (A.5b)

For notationtd convenience, the index k starts from O in (A.2) even though we are in
steady-state. Since the frequencies in US are harmonically related, both the input us and
deterministic part of the output at steady-state u will be periodic with period TP.

Assume that m periods of data are collected at steady-state. Denote the output data from
the /th period as,

Yg(k) = Y~(k + (~ – l)Na) (A.6)

fork =O,..., Nlandl=l=l
,. ,.

,..., m. Frequency domain estimates P(~i  ), ~i, bi are now
constructed from the data.

P(@i)  = ~ ~~1 yf(~i)

U~(@i)
(A.7)
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I “8 k=O a’” k=o

I To aid subsequent discussion, a vector d of estimated quantities iii and ii in (A.8) is defined
as follows,

(A.10a). . .

t?l=[iil, .O., tin,]n $ = [&,..., tn,]T (A.10b)

The analmis to follow will treat two cases, depending on whether or not o is known a-priori.

I CASE 1: 0 KNOWN

Consider the following lemma.

Lemma A.1

If A is an idempotent matrix (i.e., A2 = A), and z w IV(O, 1), then XTAX has a Xz(r)
distribution, where r = trace(A) = rank(A).

Proofi see Goodwin and Payne [13], pg. 217. ■

An i~portant  result follows concerning the statistical properties of the estimates, #, tii,
and bi.

Theorem A.1

Let frequency domain estimates ~ defined in (A.7) and 6 defined in (A.8)(A.1O), be com-
puted based on m periods of the steady-state data {y~}~=l (A.2)(A.6)  in response to the
Schroeder-phased input (Al). Let the measurement noise v(k) in (A.2) be white Gaussian
i.e., colored by filter W = a where CT is a known constant. Furthermore, let O be the vector
of real and imaginary parts of P* as defined in (A.5) and let (? be the vector of real and. . ,.
imaginary parts of P as defined in (A.1O). Then the statistics of P and @ are given as,

lP*(e-jwi~) – F(Wi)12

02Cii
- /(2) ( A l l )

L? ~ Iv(e, z) (A.12)

where,

(A.13)

C = diag[cl~,...,  cn,n,], cii = l/(Qim~8) (A.14)

and where X2(v) denotes a Chi-Squared distribution with v degrees of freedom.

16



Proof: Assume for the moment that we treat (A,2)(A.3)  as a regression equation and
apply a Gauss-Markov formulation to estimating the parameters a; and bj. This gives the
matrix system,

Y= Ii+v=HO+v (A.15)

where v = [Y,(O), . . . . Y.(~~. - 1)]T, ~ = [~(o), . . ..~(mNa–l)]~.  v = [v(o), . . .. V(??-N8-I)]T.
E[v] = o, Cov[v] = q2 o I, and H can be written in partitioned form as,

H = [Ha IH6] (A.16)

( ficoskm’+h) .  .  . ~cos(wn,02’ + 4%)

Hb=& . .. .

~cos(til (m~s  – l)T + 41) ..: ~cos(w~, (m”Ns – 1)7’ + & ) )

Using Normal theory, the Gauss-Markov estimate 8* is given by [13],

(A.17)O* = (HTH)-l H~y

Furthermore, it is well known that 0“ has statistics [13],

O* - IV(6, Z*) (A.18)

II* = (#(lmf)-’ (A.19)

Using the partitioned matrix (A.16) and the fact that H~~b  = H~Ha = O gives after
some algebra,

(
H T H  =  ‘~

‘;Hb)=(cil ‘1)
(A.20)

where,
C = diag[cll,...,  c~, ~,], cii = l/(~imN~) (A.21)

Substituting (A.20) into the Gauss-Markov estimator (A.17) and using the partitioned
not at ion

O* = [(a”)~, (b*)T]T (A.22a)

a’= [af,...,al. - I, n.]T, b* – [b* . . ..b* ]T (A.22b)

gives,
a* = CH~y (A.23a)

b* = (?H~y (A.23b)
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Expanding, this can beshown to becomponentwise  equivalent toa~ =ii~ =~{~(w~)} and
b? =~i = !l?{~(wi)}  where P is the frequency domain estimator defined by (A.7) (this is
most efficiently done by abando~ing matrix notation for this step, and demonstrating the
result componentwise). Hence, 6 = 8* (i.e., the DFT estimator (A.7)(A.8)  is the Gauss
Markov estimator for this problem) and results (A.12)-(A.14) follow from (A.18)-(A.21).

To show (Al 1), construct the normalized statistically independent Gaussian variables,
r. = (ai – ~i)/(~@) * N(O, 1), and rb = (bi – &i)/(~&) N N(O, 1). Then,

(A.24)

where the X2(2) distribution for r: +rj is deduced by invoking Lemma A. 1 with x = [r~, rb]~
and A = I, ■

Corollary A.1

Estimates ~(~i)) ~i, and $i from the DFT estimator (A.7)(A.8) are unbiased and consistent
estimators of I’* (e-@i T ), ai, and bi, respectively, for all i =1, . . ..n.,

Pr~of: From Theorem A.1 equation (A.12) it follows that 13[~i] = ai, E[?)i] = bi and hence
13’[P(~i )] = P* (e-@t ‘). Furthermore, the estimates converge in probability, since, for any
c and t,

Prob(]P*(e-j’”iT ) – F((Ji)] > 6) <6

for all m > xf_6(2)c72/(e2aiN8);  and,

PrOb(l~i – ail > ~) <6, Prob(l~i –bil > ~) < 6

Remark A:l It is noted that even if v is not Gaussian, each of the estimates ~i and ii
and hence P(tii ) are linear combinations of mN4 independent random variables. Hence,
by the Central Limit Theorem [21], the distributions are well approximated by Gaussian
distributions for rnN. reasonably large. m

CASE 2: a UNKNOWN

In certain applications, the noise variance a2 may not be known a-priori. In this case, it
can be estimated directly from the data by the quantity 82 where,

~2 S(6)0=
mN8 — 2na

(A.25)

S(4) = (y – H4)T(y – M) (A.26)

where y and H are as defined in the proof of Theorem A. 1.
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Remark A.2 Alternatively, 62 in (A.25) can beconvcniently
spectral estimates Y~(Ui ) as follows,

where,

computed in terms of the

(A.27)

(A.28)

The computation of (A.25) by formula (A.27) follows by noting,

s(e) = (y – Hi)T(y – m) (A.29)

= ‘jj ‘jj’(y~(k) - ‘jj(~iwcos(~i~l’+  #i) - ~i=sin(~i~~  +  #i)))’ (A.30)
t=) k=o i= 1

where (A .30) follows by expanding (A.29) in terms of summation notation; (A.31 ) follows
fro~ (A.30) by using Parseval’s formula [20]; and (A.32))  follows by using the definition
of P from (A.7). m

The following result characterizes the error probabilities in the case where u is estimated,

Theorem A.2

Let frequency domain estimates ~ defined in (A.7) and 6 defined in (A.8)(A.1O), be com-
puted based on m periods of the steady-state data {~~}~=1 (A.2)A.6)  in response to the
Schroeder-phased input (Al). Furthermore, let the output noise v(k) in (A.2) be a sta-
tionary Gausian process with coloring filter W = a where u’ is an unknown scalar, and
estimated by 62 in (A.25). Then,

A.2.a  82 is an unbiased, consistent estimate of a2 and has the probability distribution,

‘2
(mN. – 2n,)~ N X2(mN* – 2na) (A.33)

A.2.b

(A.34)

where t(v) denotes a Student t distribution with v degrees of freedom;
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A.2.c

(A.35)

where Z’(VI, V2 ) denotes a Fisher distribution with v, and V2 degrees of freedom.

Proofi This proof makes use of all notation ~d results developed in statement and proof
of Theorem A. 1.

Defing residual vectors rl = y – H(? and rz = d – O where, as noted in the proof of Theorem
A.1, O is the Gauss- Markov estimator for 4. Vectors rl and r2 are joint multivariate
Normal since it can be shown that r, =(1 – 17L)v and rz = Lv where L = (H%)-’H?
Furthermore, it can be verified that Cov[rl,  rz] = 02(1 – 17L)L~ = 0, implying that r]
and rz are statistically independent. It is also noted that rl and Hr2 are orthogonal as
Euclidean vectors since (r], Hrz) = VT(I – HL)HLv = O. These facts will be required for
the proof.

Consider the random variable z = S(~)/a2  where S(j) is defined in (A.26). By algebra,

(A.36)

r~rl VT(I – HL)v= = (A.37)~2 ~z

Since I – HL is idempotent with rank mNa – 2n., and v/o - N(O, 1) it follows from
(A.37) and Lemma A.1 that z w X2(mNa – 2n~ ). Result (A.33) follows by noting from
(A.25) and (A.36) that z = (mNa – 2n8)82/a 2. Unbiasedness  and consistency of 62 follow

immediately from (A.33).

Consider the normalized random variable ii = (~i - ai)/(a@) N N(O, 1). Since r] is
independent of rz, it follows that ii is independent of z. Hence, we can constiuct  a Student
t distributed random variable by taking the ratio,

6 (tli – ai)/(0/@

~z/(mN. – 2n.) =

@i~u~mN~ -2n,~

Here, we have used the fact that Z/ @ N t(k) where z and
random variables such that x w N(O, 1) and y - Xz(k) [7].

w t(mNa – 2n,) (A.38)

y are statistically independent
Writing (A.38) in terms of &

from (A.25) gives the desired result (A~34) for ~i. An identical argument can be used to
prove result (A.34) for &i.

To prove (A.35), consider normalized random variables ra = (di – ai)/(O@) N N(O, 1),
rb = (~i – bi)/(~@J w N(O, 1), and z = S(@)/Oz. It is noted that r: ~ X2(1), rj - X2(1),
z w X2(mN, – 2n.),  and all three random variables r., rb, z are statistically independent
by the statistical independence of r] and rz. Now, by algebra it can be shown that

p*(~-juiT) - P(fdi)12 (r: + rj)/2= w F(2, mN. – 2n,)
2&2Cii z/(mN. – 2n.)

(A.39)
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_jf+-(r, )hHere, wehaveused the fact that “ ““) -F v. Vy w erez andyare statistically inde-

pendent random variables such that x NX2(V~) and~  w X2(VV).  Equation  (A”39)  isthe

desired result (A.35). ■

APPENDIX B

The analysis in Appendix B draws upon the results from Appendix A, and is applicab&
to systems where the noise coloring filter in Fig. 1 is given by the general form W = uW
where ~ is assumed known, while u may be known or unknown.

In order to “whiten” the effect of the noise, the time domain input u. and output y. will
be inverse filtered by ~ to give filtered signals iis and fl. as follows,

mqz-l)j.(k)  = y.(k); Tv(z-l)ti@) = u.(k) (B.1)

Since the frequencies in Ua are harmonically related, both the input ii. and deterministic
part of the output ~. at steady-state will be periodic with period TP. Assume that m
periods of filtered input/output data ii., ~. are collected at steady-state. Denote the filtered
output data from the l!th period as,

im) = th(~ + (t – I) N.) (B.2)
. .

for k = O,..., IV, – 1 and/= 1,..., rn.

Theorem- B.1

For:he  general case of noise coloring filter W(Z-l ) = a~(z- ] ), consider the computation
of P in (A.7) and c52 in (A.27) with U* and yj(k)  replaced by their steady-state filtered
counterparts il~ and ~~ in (B.1) and (B.2). Then the results of Theorems A.1 and A.2
remain true with cii modified to

Cjj = lW((3-jwiT)12/C1’  j?7’tNa (B.3)

Proof: The noise is colored such that v(k) = a~d(k). Hence by the filtering action in
(B.1) and the steady-state assumption, it follows that,

‘ii.(k) = ~ &COS(LdjkT + Jj) (B.4)
i= 1

where ~ = @/l~(e-~W’~)l, and the additive noise O(k) is “whitened” to give fi(k) e

crd(k). This case is now identical to that treated Theorems A. 1 and A.2 with US replaced
with fi~ and y~ replaced by ~s or equivalently, with ~i replaced by &i = ai/l~(e-~WiT)12.=
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Remark B.1 It is useful to note that if the length of each data window TP = TN. is large
——

compared to the time constants of W ), then the inverse filtering in Fig. 1 can be omitted
with little error, since Ua E DFT{G.] = Us/~ and ~$ s DFT{~~}  m Y’/~ and thus,

This has important practical implications since
filtering are eliminated.

the complications associated with inverse
●
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